For my childhood
The SCGMD series is my initiation into rythm games
[Master] involves dense chordjack, while [Pro] involves light chordjack (or dense jumpjack? I can't tell)
Wanted to reference SCGMD in names of diffs (Amateur and Pro) but I ran out of words
As you can see names of first three diffs have the same meaning lol
2024/10/31 - All difficulties completed
2024/11/2 - Submitted for rank. I can mod anyway
2025/2/11 - Ranked
# | Grade | Player | Perf. Rating | Accuracy | Max Combo | Marvelous | Perfect | Great | Good | Okay | Miss | Mods | Date |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 |
![]() |
![]() |
12.14 | 100.00% | 259x | 259 | 0 | 0 | 0 | 0 | 0 | 2.0x, NM | 4mo |
2 |
![]() |
![]() |
12.13 | 99.99% | 259x | 257 | 2 | 0 | 0 | 0 | 0 | 2.0x | 2mo |
3 |
![]() |
![]() |
12.11 | 99.97% | 259x | 254 | 5 | 0 | 0 | 0 | 0 | 2.0x | 2mo |
4 |
![]() |
![]() |
12.11 | 99.96% | 259x | 253 | 6 | 0 | 0 | 0 | 0 | 2.0x | 3mo |
5 |
![]() |
![]() |
12.10 | 99.95% | 259x | 251 | 8 | 0 | 0 | 0 | 0 | 2.0x, Mirror | 3mo |
6 |
![]() |
![]() |
12.09 | 99.93% | 259x | 249 | 10 | 0 | 0 | 0 | 0 | 2.0x | 4mo |
7 |
![]() |
![]() |
11.94 | 99.73% | 259x | 238 | 20 | 1 | 0 | 0 | 0 | 2.0x | 4mo |
8 |
![]() |
![]() |
11.91 | 99.69% | 259x | 232 | 26 | 1 | 0 | 0 | 0 | 2.0x | 4mo |
9 |
![]() |
![]() |
11.78 | 99.51% | 259x | 224 | 33 | 2 | 0 | 0 | 0 | 2.0x | 1mo |
10 |
![]() |
![]() |
11.75 | 99.47% | 259x | 199 | 59 | 1 | 0 | 0 | 0 | 2.0x | 4mo |
11 |
![]() |
![]() |
11.72 | 99.42% | 259x | 192 | 66 | 1 | 0 | 0 | 0 | 2.0x | 3mo |
12 |
![]() |
![]() |
11.69 | 99.37% | 259x | 204 | 53 | 2 | 0 | 0 | 0 | 2.0x, NM | 2mo |
13 |
![]() |
![]() |
11.66 | 99.34% | 259x | 218 | 38 | 3 | 0 | 0 | 0 | 2.0x | 4mo |
14 |
![]() |
![]() |
11.64 | 99.30% | 259x | 194 | 63 | 2 | 0 | 0 | 0 | 2.0x | 2mo |
15 |
![]() |
![]() |
11.64 | 99.30% | 259x | 194 | 63 | 2 | 0 | 0 | 0 | 2.0x | 3mo |
16 |
![]() |
![]() |
11.60 | 99.25% | 259x | 186 | 71 | 2 | 0 | 0 | 0 | 2.0x | 4mo |
17 |
![]() |
![]() |
11.55 | 99.17% | 259x | 212 | 43 | 4 | 0 | 0 | 0 | 2.0x, NM | 4mo |
18 |
![]() |
![]() |
11.43 | 99.01% | 259x | 211 | 44 | 3 | 1 | 0 | 0 | 2.0x | 3mo |
19 |
![]() |
![]() |
11.41 | 98.98% | 259x | 184 | 71 | 4 | 0 | 0 | 0 | 2.0x | 2mo |
20 |
![]() |
![]() |
11.37 | 98.91% | 259x | 174 | 81 | 4 | 0 | 0 | 0 | 2.0x | 3mo |
21 |
![]() |
![]() |
11.27 | 98.77% | 259x | 191 | 62 | 6 | 0 | 0 | 0 | 2.0x | 4mo |
22 |
![]() |
![]() |
11.19 | 98.66% | 259x | 201 | 53 | 3 | 2 | 0 | 0 | 2.0x | 4mo |
23 |
![]() |
![]() |
11.08 | 98.49% | 259x | 172 | 81 | 5 | 1 | 0 | 0 | 2.0x | 2mo |
24 |
![]() |
![]() |
11.07 | 98.47% | 259x | 185 | 66 | 8 | 0 | 0 | 0 | 2.0x | 2mo |
25 |
![]() |
![]() |
11.06 | 98.46% | 259x | 149 | 105 | 4 | 1 | 0 | 0 | 2.0x | 1mo |
26 |
![]() |
![]() |
11.00 | 98.37% | 259x | 192 | 59 | 7 | 1 | 0 | 0 | 2.0x | 3mo |
27 |
![]() |
![]() |
10.96 | 98.31% | 259x | 165 | 87 | 6 | 1 | 0 | 0 | 2.0x | 16d |
28 |
![]() |
![]() |
10.92 | 98.26% | 179x | 181 | 72 | 5 | 0 | 0 | 1 | 2.0x | 4mo |
29 |
![]() |
![]() |
10.90 | 98.22% | 259x | 170 | 81 | 7 | 1 | 0 | 0 | 2.0x | 2mo |
30 |
![]() |
![]() |
10.86 | 98.16% | 259x | 162 | 89 | 7 | 1 | 0 | 0 | 2.0x | 4mo |
31 |
![]() |
![]() |
10.73 | 97.97% | 259x | 167 | 81 | 11 | 0 | 0 | 0 | 2.0x | 4mo |
32 |
![]() |
![]() |
10.47 | 97.56% | 259x | 168 | 78 | 12 | 1 | 0 | 0 | 2.0x | 4mo |
33 |
![]() |
![]() |
10.46 | 97.55% | 250x | 156 | 94 | 7 | 1 | 0 | 1 | 2.0x | 3mo |
34 |
![]() |
![]() |
10.18 | 97.10% | 259x | 138 | 106 | 14 | 1 | 0 | 0 | 2.0x, Mirror, NM | 3mo |
35 |
![]() |
![]() |
10.02 | 96.85% | 259x | 135 | 106 | 18 | 0 | 0 | 0 | 2.0x, NM | 4mo |
36 |
![]() |
![]() |
9.97 | 96.77% | 259x | 150 | 92 | 15 | 2 | 0 | 0 | 2.0x | 3mo |
37 |
![]() |
![]() |
9.58 | 96.14% | 259x | 155 | 83 | 18 | 3 | 0 | 0 | 2.0x | 1mo |
38 |
![]() |
![]() |
8.85 | 94.87% | 259x | 157 | 77 | 17 | 8 | 0 | 0 | 2.0x, NM | 2mo |
39 |
![]() |
![]() |
8.60 | 94.42% | 172x | 143 | 88 | 24 | 2 | 0 | 2 | 2.0x | 4mo |
40 |
![]() |
![]() |
8.10 | 93.49% | 128x | 145 | 87 | 16 | 9 | 0 | 2 | 2.0x | 2mo |
41 |
![]() |
![]() |
7.89 | 93.07% | 158x | 130 | 97 | 25 | 4 | 0 | 3 | 2.0x | 3mo |
42 |
![]() |
![]() |
7.69 | 92.67% | 259x | 132 | 85 | 35 | 7 | 0 | 0 | 2.0x | 4mo |
43 |
![]() |
![]() |
7.25 | 91.78% | 165x | 123 | 91 | 37 | 7 | 0 | 1 | 2.0x | 21d |
44 |
![]() |
![]() |
5.89 | 88.64% | 129x | 111 | 92 | 43 | 9 | 0 | 4 | 2.0x | 10d |
45 |
![]() |
![]() |
5.31 | 91.54% | 211x | 126 | 86 | 39 | 7 | 0 | 1 | 1.7x | 2mo |
46 |
![]() |
![]() |
3.52 | 91.13% | 183x | 122 | 99 | 25 | 10 | 1 | 2 | 1.5x | 3mo |
47 |
![]() |
![]() |
3.51 | 81.32% | 65x | 80 | 102 | 51 | 15 | 2 | 9 | 2.0x | 3mo |
48 |
![]() |
![]() |
2.26 | 75.56% | 184x | 51 | 88 | 85 | 28 | 1 | 6 | 2.0x | 1mo |
49 |
![]() |
![]() |
1.22 | 86.68% | 144x | 96 | 105 | 44 | 7 | 3 | 4 | 1.2x | 2mo |
50 |
![]() |
![]() |
0.88 | 100.00% | 259x | 259 | 0 | 0 | 0 | 0 | 0 | None | 4mo |